Graphics for Free

Martin C. Carlisle
Computer Science Department
US Air Force Academy, CO 80840-6234
mcc@cs.usafa.af.mil

1 Introduction

Students find computer graphics one of the most interesting topics in computer science Unfortunately, writing
programs with graphics requires understanding concepts that are usualy beyond the scope of an introductory
computer science ourse. For example, in Windows 95, a program that uses graphics must have an event loop that
dispatches messages to the appropriate handler. Event loops, messages and handlers are well beyond the grasp of
someone just learning about variables! As a result, programming assgnments for introductory courses tend to use
no graphics, or smple ANSI graphics (see e.g. Feddman and Koffman [1]). These programs compare unfavorably
to the graphics of games most students are accustomed to using, and motivation to program in an introductory
course may belost.

Ideally, we would like to be able to have students write programs that have more appeali ng interfaces, yet do
not require a large amount of additional conceptual complexity. In fact, the best case would be to have the student
write a program as if it were a smple text-based program, and have the compiler automatically add a graphical
interface Languages that provide overloading, such as Ada 95, al ow us to accomplish predsdly that.

This paper describes a library, Graphics 110 (named in honor of our introductory course, CS 110), which,
using overloading, replaces the standard 1/O libraries in Ada 95 AdaText |0, AdaFloat_Text IO, and
Ada.Integer_Text_|O. By following a simple @ntract and replacing calls to the standard libraries with calls to
Graphics_11Q the student obtains a program with a Windows-style interface without ever having to worry about
the implementation details. Although we use Ada 95 for this paper, the ideas extend to any programming
language that provides subtypes and overloading.

The next sedion describes the “contract” the programmer must follow to use the library and the third sedion
describes the implementation of Graphics_11Q In each sedion, we describe how Graphics 110was used with a
battleship game implemented in our introductory course. The final sedion presents conclusions and ideas for
future work.

2 The Contract

Graphics_110was designed for simple text-based games. These games share the properties that they interact with
the user using text prompts, and display some sort of game board. Common examples of these types of games
include tic-tac-toe, role-playing maze games, cheders and battleship. The library provides the user with a 6x80
text window, and a 22x33 gid of bitmaps. (There's nothing magical about these numbers; they smply fit nicdy
on our students monitors). Text prompts appear in the text window, and dalog boxes are used for input. The
game baard is displayed in the bitmap grid.

Since we are @nverting text-based games with no graphics capabiliti es, we assime that text written to the
screen isin one of two forms: either a text sequence (a prompt or informational messge), or a display of the game
board. The entire game board must be drawn at once Whil e drawing the game board, the programmer must use
defined constant values rather than putting the daracters diredly. For example, Put(ltem => Ship) is
allowed, but Put(ltem => ‘A’) is forbidden. Ship is then dedared to ke a constant Icon_Type whose
value is ‘A’ in the text-based program. (Icon_Type is dedared to be a subtype of Character). An example
usage of the library is given in Appendix B.

To convert a program from text-based to Windows-based, onefirst replaces the WITH and USE clauses for the
Text_IO libraries with WITH and USE clauses for Graphics 11Q (Although experienced Ada programmers tend
to frown on the use of the USE clause, we alow it in our introductory course for the sake of brevity). Then, it is

only necessary to comment out the dedaration of the subtype Icon, and all the mnstant dedarations of that type.
These mnstants will be dedared and assciated with bitmaps in the instructor-provided Graphics 110 ackage.

In summary, we require the student to anly make dight changes to mee our contract and then to convert to a
Windows-based program. First, we reguire them to draw the entire game board at once This does not seam like a
large restriction, as in a text-based game, the program usually aternates between prompts and drawing the whole
board. Seamnd, we require use of a subtype for everything that will be displayed on the game board. The process
for using Graphics 110 necesstates this, as each of those mnstants will be redefined in the package provided by
theingtructor. Finally, after the program is working in a text-based mode, smply by changing the WITH and USE
clauses, and commenting out some dedarations, the program will provide a graphical interface

3 Implementation Details

The original version of Graphics_110was implemented in Ada 95, using the Microsoft Windows API. To enable
broader use of the software, it has been reimplemented using the TASH [3] binding to Tcl/Tk [2]. This sdion
describes initi ali zaion, how events are handled, and also what is done for each type of call to alibrary routine.

Ada 95 permits packages the definition of code bodies within packages that are exeauted before the main
procedure begins. Graphics 110 sesits code body to goen the window, and dsplay a blank grid. By doing this,
we kegp with our philosophy of requiring as few changes as posdble from a text-based program; the student can
not acddentally forget to call the initialization routine. (If the library wereto be ported to a language that did not
have this feature, one could simply keegp a bodean variable that keeps track of whether or not initializaion has
been done. This variable would then have to ke chedked on each library call, and theinitiali zation routine clled if
necessary.)

A key asaumption that we make is that student programs tend to be I/O bound. Asaresult, it is not necessary
to have the student write an event logp or do polling. Instead each library routine processes any pending events
when it iscalled. Again, by doing thiswe minimize danges to the student’sinitial program.

There are four procedures provided by the Graphics 110interface (these replace simil arly spedfied procedures
from the standard Text /O library provided with Ada 95): Put, New_Line , Get, and Skip_Line . Put is
overloaded, takes a single argument of type Integer , Float , Character , or String and dsplays it to the
screen (we display these in the text window). We have also added an overloaded version of Put that takes an icon
as an argument (to be displayed in the game board area). New_Line advancesthe arsor tothe next line. Ada95
also hasa Put_Line procedure, which combines Put and New_Line for a single string. We provide a similar
procedurein Graphics_110by simply calling our Put procedure foll owed by our New_Line procedure. It hasan
optional argument that is the number of lines to advance Get is also owerloaded, and is used to read either an
Integer , Float , Character , or String from the keyboard. Its counterpart, Skip_Line , is used to read
and discard al characterstyped at the keyboard until the next timethe ENTER key is pressd.

To implement these four procedures, we must keg track of the following gobal state variables:
LastWaslcon (did the last call to Put have an icon as its argument), LastWasGet (was Get the last
Graphics _110routine alled), TextScreen (copy of all text currently displayed in text window), Bi tmapArray
(array of al icons currently displayed on game board), CurrentTextRow and CurrentTextCol (where
cursor isin text window), and CurrentBitmapRow and CurrentBitmapCol (where last icon was displayed
on game board).

For icons, a Put is performed by upcating the appropriate location in the BitmapArray , and then
modifying CurrentBitmapCol . Sinceas previously mentioned, our contract requires the student to display the
game board all at once we @n use LastWaslcon to determine whether or not to return to the upper left corner
of the game board. If LastWaslcon is false, there has been text displayed, and we must be beginning again in
the upper left corner. If incrementing CurrentBitmapCol would cause it to exceal its maximum posshle
value, New Line iscalled to goto the next row.

Other Puts are performed by first (if necessary) creating the string representation of the output (for numbers
this is done by calling the appropriate Ada Text 1/O library routine) and then calling our Put routine for strings.
To put a string, we simply modify the array TextScreen , placing the daracters of the string at the location
spedfied by CurrentTextRow and CurrentTextCol . The airrent row isthen updated accordingly, and bath
LastWaslcon and LastWasGet are set to false. As with icons, New_Line iscalled if necessary to get text

wrap.

For aNew_Line , if LastWaslcon isfalse, CurrentTextRow isincremented, and CurrentTextCol is
st to 1. Otherwise, CurrentBitmapRow and CurrentBitmapCol are updated. Following this,
LastWasGet is st to false, and an internal routine, UpdateWindow , is called to process any pending events
and redraws the window. LastWaslcon remains unchanged.

For a Get, a dialog box is displayed. The user then may type the input, and must pressENTER or use the
mouse to click “ok.” Graphics_110then converts the input to the appropriate type (again using standard Ada Text
I/O library routines). LastWasGet is &t totrue and LastWaslcon is st tofalse. Finaly the valueisreturned.

Usually in our students programs, following each Get is a Skip _Line , which requires the student to press
ENTER. Since the dialog box aready required the student to press ENTER, this would be redundant.
Consequently, if LastWasGet istrue the Skip _Line isignored, and LastWasGet isreset tofalse. Thereare,
however, occasionswhen Skip _Line isused to pausethe program (e.g. if along text messageis being dsplayed,
and the user needs to have wntrol over the speeal of scrolling). To accommodate this, if LastWas Get is false,
Skip _Line displays a dialog box which waits for the user to press ENTER or click “ok” before the program
continues.

By keeping the state variables and using them, as abowe, we are able to oltain the desired Windows behavior
using the same sequence of call s asin the text-based program.

4 Conclusions and Future Work

Our implementation of Graphics 110 allowed us to succesqully convert the text-based game written by
introductory students to a graphical version. The students have often expressed an interest in being able to write
programs containing graphics; however, we have found the amount of detail ed coding required to be too great for
an introductory course. The Graphics 110 ackage enables our students to add a limited amount of graphics and
Windows behavior to their programs.

We now have three omplete student projeds implemented using the Graphics 110 library, Battleship,
Connea Four, and Othdllo. Each semester, we have the students, working in groups of 2 or 3, implement a game.
The students are given the graphics library, and implement the game logic and a computer strategy. The computer
strategy procedures are pitted against each other in a tournament. A picture showing a student’s Battleship
program during exeadtion is given in Appendix A. Complete sources for the library and these three projeds are
avail able at ftp://ftp.usafa.af.mil/pub/dfcs/carli d e/usafa/graph11dindex.html.

Graphics_11Q while providing a very easy way for students to add gaphics to programs, is limited to text
games that have some sort of grid. In the future, we would like to explore how to provide a simple abstraction for
more complicated graphical programs, such as animations.

References

1. Feldman, M. and Koffman, E. Ada 95 Problem Sdving andProgram Design, Second Edition. Addison-
Wedley, Reading, Mass, 1996

2. Ousterhout, J. Tcl andthe Tk Todkit, Addison-Wesley, Reading, Mass, 1994

3. Westley, T. TASH: A FreePlatform-Independent Graphical User Interface Development Todkit for Ada. In
Procealings of Tri-Ada’96. (1996, 165178

Appendix A

Following is a picture of the Graphics 110version of battleship duing execauition:
t =1

Entse cow foc ahab --= 7
Entee column foe shak --> &
Hage Liwea - 13

Coiifpubee Liwes = 11

Entec cow foc shobk -=> B
Entec column foc shab --> &

12345678910 ¢ ! i ! 1 2345 &7F 8910

HvounnbwnB

Enter value:

Appendix B

A portion of a Battleship text-based program that is ready to be used with the Graphics_110library is siown
bel ow. This procedure draws the game board, displaying the @mputers ships if the bodean
Display_Computers is st totrue.

SUBTYPE Icon IS Character;

Sea : CONSTANT Icon ="~
Hit : CONSTANT Icon :='H";
Miss : CONSTANT Icon :=' "
Ship : CONSTANT Icon :='S";

Blank : CONSTANT Character :='";

TYPE Digits IS ARRAY (1..10) OF Icon;

Number : CONSTANT Digits :=

(Ill,‘2‘,I3I,'4',I5I,|6|,I7I,'8.,lgl,‘0‘);

TYPE Board_Array IS ARRAY (1..22,1..33) OF Icon;

PROCEDURE Draw_Boards (
User_Board . IN Board_Array;
Computer_Board : IN Board_Array;
Display_Computers: IN Boolean) IS

BEGIN -- Draw_Boards

-- Leave room for row headings
Put (Item => Blank);
Put (Item => Blank);

-- Display user board col headings

FOR Column IN 1..Num_Columns LOOP
Put (Item => Number(Column));

END LOOP;

-- Leave space between boards
FOR Column IN 1..6 LOOP

Put (Item => Blank);
END LOOP;

-- Display computer col headings

FOR Column IN 1..Num_Colum ns LOOP
Put (Item => Number(Column));

END LOOP;

New_Line;

FOR Row IN 1..Num_Rows LOOP
Put (Item => Blank);
Put (Item => Number (Row));

FOR Col IN 1..Num_Columns LOOP
Put(ltem=> User_Board(Row,Col));
END LOOP;

FOR Col IN 1..5 LOOP
Put (Item => Blank);
END LOOP;
Put (Item => Number (Row));

FOR Column IN 1..Num_Rows LOOP
IF Computer_Board(Row,Col)=Ship AND Display_Computers=False THEN
Put (Item => Sea);
ELSE
Put (Item => Computer_Board(Row,Col));
END IF;
END LOOP;

New_Line;
END LOOP;

END Draw_Boards;

